A seizure-induced gain-of-function in BK channels is associated with elevated firing activity in neocortical pyramidal neurons.

نویسندگان

  • Sonal Shruti
  • Roger L Clem
  • Alison L Barth
چکیده

A heritable gain-of-function in BK channel activity has been associated with spontaneous seizures in both rodents and humans. We find that chemoconvulsant-induced seizures induce a gain-of-function in BK channel current that is associated with abnormal, elevated network excitability. Action potential half-width, evoked firing rate, and spontaneous network activity in vitro were all altered 24 h following picrotoxin-induced seizures in layer 2/3 pyramidal cells in the neocortex of young mice (P13-P16). Action potential half-width and firing output could be normalized to control values by application of BK channel antagonists in vitro. Thus, both inherited and acquired BK channel gain-of-functions are linked to abnormal excitability. Because BK channel antagonists can reduce elevated firing activity in neocortical neurons, BK channels might serve as a new target for anticonvulsant therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anticonvulsant effects of the BK-channel antagonist paxilline.

PURPOSE Mutations that enhance currents through the Ca(2+)- and voltage-gated K(+) channel BK (Slo, maxiK, KCNMA1) have been associated with seizure disorders in both rodent models and humans. Previously we have found that seizures themselves induce a gain-of-function in BK channels that is associated with elevated excitability in neocortical neurons. In this study, we sought to examine whether...

متن کامل

Cortical up state activity is enhanced after seizures: a quantitative analysis.

In the neocortex, neurons participate in epochs of elevated activity, or Up states, during periods of quiescent wakefulness, slow-wave sleep, and general anesthesia. The regulation of firing during and between Up states is of great interest because it can reflect the underlying connectivity and excitability of neurons within the network. Automated analysis of the onset and characteristics of Up...

متن کامل

BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells.

Neuronal potassium (K(+)) channels are usually regarded as largely inhibitory, i.e. reducing excitability. Here we show that BK-type calcium-activated K(+) channels enhance high-frequency firing and cause early spike frequency adaptation in neurons. By combining slice electrophysiology and computational modelling, we investigated functions of BK channels in regulation of high-frequency firing i...

متن کامل

The role of BK channels in antiseizure action of the CB1 receptor agonist ACEA in maximal electroshock and pentylenetetrazole models of seizure in mice

The anticonvulsant effect of cannabinoid compound has been shown in various models of seizure. On the other hand, there are controversial findings about the role of large conductance calcium-activated potassium (BK) channels in the pathogenesis of epilepsy. In this study, the effect of arachidonyl-2′-chloroethylamide (ACEA), a CB1 receptor agonist, and a BK channel antagonist, paxilline, either...

متن کامل

Development of BK channels in neocortical pyramidal neurons.

1. Postnatal development of a large conductance Ca(2+)-activated K+ channel (BK channel) was investigated in neocortical infragranular pyramidal neurons with inside-out and outside-out patchclamp configurations. Neurons were acutely isolated from slices of 1- to 28-day-old rats (P1-P28) by using a vibrating glass probe after preincubation with low concentrations of enzymes. Patch membrane area ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurobiology of disease

دوره 30 3  شماره 

صفحات  -

تاریخ انتشار 2008